RVSDG

Author:

Reissmann Nico1,Meyer Jan Christian1,Bahmann Helge2,Själander Magnus3ORCID

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

2. Auterion AG, Switzerland

3. Norwegian University of Science and Technology and Uppsala University, Uppsala, Sweden

Abstract

Intermediate Representations (IRs) are central to optimizing compilers as the way the program is represented may enhance or limit analyses and transformations. Suitable IRs focus on exposing the most relevant information and establish invariants that different compiler passes can rely on. While control-flow centric IRs appear to be a natural fit for imperative programming languages, analyses required by compilers have increasingly shifted to understand data dependencies and work at multiple abstraction layers at the same time. This is partially evidenced in recent developments such as the Multi-Level Intermediate Representation (MLIR) proposed by Google. However, rigorous use of data flow centric IRs in general purpose compilers has not been evaluated for feasibility and usability as previous works provide no practical implementations. We present the Regionalized Value State Dependence Graph (RVSDG) IR for optimizing compilers. The RVSDG is a data flow centric IR where nodes represent computations, edges represent computational dependencies, and regions capture the hierarchical structure of programs. It represents programs in demand-dependence form, implicitly supports structured control flow, and models entire programs within a single IR. We provide a complete specification of the RVSDG, construction and destruction methods, as well as exemplify its utility by presenting Dead Node and Common Node Elimination optimizations. We implemented a prototype compiler and evaluate it in terms of performance, code size, compilation time, and representational overhead. Our results indicate that the RVSDG can serve as a competitive IR in optimizing compilers while reducing complexity.

Funder

Vetenskapsrådet

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3