Mop

Author:

Chen Feng1,Roşu Grigore1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Monitoring-Oriented Programming (MOP1) [21, 18, 22, 19] is a formal framework for software development and analysis, in which the developer specifies desired properties using definable specification formalisms, along with code to execute when properties are violated or validated. The MOP framework automatically generates monitors from the specified properties and then integrates them together with the user-defined code into the original system. The previous design of MOP only allowed specifications without parameters, so it could not be used to state and monitor safety properties referring to two or more related objects. In this paper we propose a parametric specification formalism-independent extension of MOP , together with an implementation of JavaMOP that supports parameters. In our current implementation, parametric specifications are translated into AspectJ code and then weaved into the application using off-the-shelf AspectJ compilers; hence, MOP specifications can be seen as formal or logical aspects. Our JavaMOP implementation was extensively evaluated on two benchmarks, Dacapo [14] and Tracematches [8], showing that runtime verification in general and MOP in particular are feasible. In some of the examples, millions of monitor instances are generated, each observing a set of related objects. To keep the runtime overhead of monitoring and event observation low, we devised and implemented a decentralized indexing optimization. Less than 8% of the experiments showed more than 10% runtime overhead; in most cases our tool generates monitoring code as efficient as the hand-optimized code. Despite its genericity, JavaMOP is empirically shown to be more efficient than runtime verification systems specialized and optimized for particular specification formalisms. Many property violations were detected during our experiments; some of them are benign, others indicate defects in programs. Many of these are subtle and hard to find by ordinary testing.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference40 articles.

1. Adding trace matching with free variables to AspectJ

2. AspectC++. http://www.aspectc.org/. AspectC++. http://www.aspectc.org/.

3. LNCS;Artho C.,2003

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Runtime verification on abstract finite state models;Journal of Systems and Software;2024-10

2. VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System.;The Journal of Object Technology;2024

3. A Monitoring Tool for Linear-Time $$\mu $$HML;Lecture Notes in Computer Science;2022

4. Synthesizing contracts correct modulo a test generator;Proceedings of the ACM on Programming Languages;2021-10-20

5. Interactive and targeted runtime verification using a debugger-based architecture;Journal of Systems Architecture;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3