Provenance Quality Assessment Methodology and Framework

Author:

Cheah You-Wei1,Plale Beth2

Affiliation:

1. Indiana University Bloomington, Berkeley, CA

2. Indiana University Bloomington, Bloomington, IN

Abstract

Data provenance, a form of metadata describing the life cycle of a data product, is crucial in the sharing of research data. Research data, when shared over decades, requires recipients to make a determination of both use and trust. That is, can they use the data? More importantly, can they trust it? Knowing the data are of high quality is one factor to establishing fitness for use and trust. Provenance can be used to assert the quality of the data, but the quality of the provenance must be known as well. We propose a framework for assessing the quality of data provenance. We identify quality issues in data provenance, establish key quality dimensions, and define a framework of analysis. We apply the analysis framework to synthetic and real-world provenance.

Funder

National Aeronautics and Space Administration

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Reference36 articles.

1. Techniques for efficiently querying scientific workflow provenance graphs

2. Efficient provenance storage over nested data collections

3. The concept of relevance in IR

4. The continuum of metadata quality: Defining, expressing, exploiting, in D. I. Hillmann and E. L. Westbrooks, Eds., Metadata in Practice, ALA;Bruce Thomas;Chicago,2004

5. VisTrails

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enriching the Open Provenance Model for a Privacy-Aware Provenance Management;European Journal of Science and Technology;2021-12-09

2. A Conceptual Framework of Data Readiness: The Contextual Intersection of Quality, Availability, Interoperability, and Provenance;Applied Clinical Informatics;2021-05

3. Enhancing Traceability in Clinical Research Data through a Metadata Framework;Methods of Information in Medicine;2020-05

4. Northstar;Proceedings of the VLDB Endowment;2018-08

5. A data quality metric (DQM);Proceedings of the VLDB Endowment;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3