Affiliation:
1. Dept. of Computer Science and Engineering, Univ. of Minnesota, MN, USA
2. Sprint, CA, USA
3. Technicolor, CA, USA
Abstract
Call detail records (CDRs) have recently been used in studying different aspects of human mobility. While CDRs provide a means of sampling user locations at large population scales, they may not sample all locations proportionate to the visitation frequency of a user, owing to sparsity in time and space of voice-calls, thereby introducing a bias. Also, as the rate of sampling is inherently dependent on the calling frequencies of an individual, high voice-call activity users are often chosen for conducting a meaningful study. Such a selection process can, inadvertently, lead to a biased view as high frequency callers may not always be representative of an entire population. With the advent of 3G technology and wide adoption of smart-phones, cellular devices have become versatile end-hosts. As the data accessed on these devices does not always require human initiation, it affords us with an unprecedented opportunity to validate the utility of CDRs for studying human mobility. In this work, we investigate various metrics for human mobility studied in literature for over a million cellular users in the San Francisco bay-area, for over a month. Our findings reveal that although the voice-call process does well to sample significant locations, such as home and work, it may in some cases incur biases in capturing the overall spatio-temporal characteristics of individual human mobility. Additionally, we motivate an "artificially" imposed sampling process, vis-a-vis the voice-call process with the same average intensity. We observe that in many cases such an imposed sampling process yields better performance results based on the usual metrics like entropies and marginal distributions used often in literature.
Publisher
Association for Computing Machinery (ACM)
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献