Affiliation:
1. T-Labs / TU Berlin, Berlin, Germany
2. University of Kaiserslautern, Kaiserslautern, Germany
Abstract
The practicality of the stochastic network calculus (SNC) is often questioned on grounds of potential looseness of its performance bounds. In this paper it is uncovered that for bursty arrival processes (specifically Markov-Modulated On-Off (MMOO)), whose amenability to per-flow analysis is typically proclaimed as a highlight of SNC, the bounds can unfortunately indeed be very loose (e.g., by several orders of magnitude off). In response to this uncovered weakness of SNC, the (Standard) per-flow bounds are herein improved by deriving a general sample-path bound, using martingale based techniques, which accommodates FIFO, SP, and EDF scheduling disciplines. The obtained (Martingale) bounds capture an additional exponential decay factor of O(e
-α n
) in the number of flows $n$, and are remarkably accurate even in multiplexing scenarios with few flows.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献