Deep Domain Adaptation With Max-Margin Principle for Cross-Project Imbalanced Software Vulnerability Detection

Author:

Nguyen Van12ORCID,Le Trung3ORCID,Tantithamthavorn Chakkrit1ORCID,Grundy John4ORCID,Phung Dinh3ORCID

Affiliation:

1. Software Systems and Cybersecurity, Monash University, Clayton, Australia

2. Human-Centric Security, CSIRO's Data61, Clayton, Australia

3. Data Science and AI, Monash University, Clayton, Australia

4. Software Systems and Cybersecurity, Monash University, Melbourne, Australia

Abstract

Software vulnerabilities (SVs) have become a common, serious, and crucial concern due to the ubiquity of computer software. Many AI-based approaches have been proposed to solve the software vulnerability detection (SVD) problem to ensure the security and integrity of software applications (in both the development and testing phases). However, there are still two open and significant issues for SVD in terms of (i) learning automatic representations to improve the predictive performance of SVD, and (ii) tackling the scarcity of labeled vulnerability datasets that conventionally need laborious labeling effort by experts. In this paper, we propose a novel approach to tackle these two crucial issues. We first exploit the automatic representation learning with deep domain adaptation for SVD. We then propose a novel cross-domain kernel classifier leveraging the max-margin principle to significantly improve the transfer learning process of SVs from imbalanced labeled into imbalanced unlabeled projects. Our approach is the first work that leverages solid body theories of the max-margin principle, kernel methods, and bridging the gap between source and target domains for imbalanced domain adaptation (DA) applied in cross-project SVD . The experimental results on real-world software datasets show the superiority of our proposed method over state-of-the-art baselines. In short, our method obtains a higher performance on F1-measure, one of the most important measures in SVD, from 1.83% to 6.25% compared to the second highest method in the used datasets.

Funder

ARC Laureate Fellowship

Publisher

Association for Computing Machinery (ACM)

Reference81 articles.

1. Martín Abadi Paul Barham Jianmin Chen Zhifeng Chen Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Geoffrey Irving Michael Isard Manjunath Kudlur Josh Levenberg Rajat Monga Sherry Moore Derek G. Murray Benoit Steiner Paul Tucker Vijay Vasudevan Pete Warden Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). 265–283.

2. “False negative – that one is going to kill you”: Understanding industry perspectives of static analysis based security testing;Ami Amit Seal;IEEE Symposium on Security and Privacy,2024

3. SMOTE: Synthetic Minority Over-sampling Technique

4. HoMM: Higher-Order Moment Matching for Unsupervised Domain Adaptation

5. Static Detection of Control-Flow-Related Vulnerabilities Using Graph Embedding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3