Urban Map Inference by Pervasive Vehicular Sensing Systems with Complementary Mobility

Author:

Fang Zhihan1,Wang Guang2,Xie Xiaoyang2,Zhang Fan3,Zhang Desheng2

Affiliation:

1. Rutgers University, Piscataway, NJ, USA

2. Rutgers University, USA

3. SIAT, Chinese Academy of Sciences & Shenzhen Beidou Intelligent Technology Co., Ltd.

Abstract

Accurate and up-to-date digital road maps are the foundation of many mobile applications, such as navigation and autonomous driving. A manually-created map suffers from the high cost for creation and maintenance due to constant road network updating. Recently, the ubiquity of GPS devices in vehicular systems has led to an unprecedented amount of vehicle sensing data for map inference. Unfortunately, accurate map inference based on vehicle GPS is challenging for two reasons. First, it is challenging to infer complete road structures due to the sensing deviation, sparse coverage, and low sampling rate of GPS of a fleet of vehicles with similar mobility patterns, e.g., taxis. Second, a road map requires various road properties such as road categories, which is challenging to be inferred by just GPS locations of vehicles. In this paper, we design a map inference system called coMap by considering multiple fleets of vehicles with Complementary Mobility Features. coMap has two key components: a graph-based map sketching component, a learning-based map painting component. We implement coMap with the data from four type-aware vehicular sensing systems in one city, which consists of 18 thousand taxis, 10 thousand private vehicles, 6 thousand trucks, and 14 thousand buses. We conduct a comprehensive evaluation of coMap with two state-of-the-art baselines along with ground truth based on OpenStreetMap and a commercial map provider, i.e., Baidu Maps. The results show that (i) for the map sketching, our work improves the performance by 15.9%; (ii) for the map painting, our work achieves 74.58% of average accuracy on road category classification.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference46 articles.

1. [n.d.]. 'https://www.tomtommaps.com/'. [Online; Retrieved December 8 2018]. [n.d.]. 'https://www.tomtommaps.com/'. [Online; Retrieved December 8 2018].

2. [n.d.]. 'https://map.baidu.com/'. [Online; Retrieved December 8 2018]. [n.d.]. 'https://map.baidu.com/'. [Online; Retrieved December 8 2018].

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3