Field Effect Deep Networks for Image Recognition with Incomplete Data

Author:

Zhong Sheng-Hua1,Liu Yan2,Hua Kien A.3

Affiliation:

1. Shenzhen University, P.R. China

2. The Hong Kong Polytechnic University, Hong Kong, P.R. China

3. University of Central Florida, Orlando, FL

Abstract

Image recognition with incomplete data is a well-known hard problem in computer vision and machine learning. This article proposes a novel deep learning technique called Field Effect Bilinear Deep Networks (FEBDN) for this problem. To address the difficulties of recognizing incomplete data, we design a novel second-order deep architecture with the Field Effect Restricted Boltzmann Machine, which models the reliability of the delivered information according to the availability of the features. Based on this new architecture, we propose a new three-stage learning procedure with field effect bilinear initialization, field effect abstraction and estimation, and global fine-tuning with missing features adjustment. By integrating the reliability of features into the new learning procedure, the proposed FEBDN can jointly determine the classification boundary and estimate the missing features. FEBDN has demonstrated impressive performance on recognition and estimation tasks in various standard datasets.

Funder

Shenzhen University research funding

Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Innovation Commission of Shenzhen under Grant

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference40 articles.

1. Cognitive basis of hallucinations in schizophrenia: role of top-down information processing

2. Multimodal fusion for multimedia analysis: a survey

3. Bernhard E. Boser Isabelle M. Guyon and Vladimir N. Vapnik. 1992. A training algorithm for optimal margin classifiers. In COLT. ACM New York NY 144--152. 10.1145/130385.130401 Bernhard E. Boser Isabelle M. Guyon and Vladimir N. Vapnik. 1992. A training algorithm for optimal margin classifiers. In COLT. ACM New York NY 144--152. 10.1145/130385.130401

4. Gal Chechik Geremy Heitz Gal Elidan Pieter Abbeel and Daphne Koller. 2006. Max-margin classification of incomplete data. In NIPS. Gal Chechik Geremy Heitz Gal Elidan Pieter Abbeel and Daphne Koller. 2006. Max-margin classification of incomplete data. In NIPS.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3