Affiliation:
1. Department of Computer Science, University College London, London, United Kingdom
Abstract
Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.
Publisher
Association for Computing Machinery (ACM)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献