1. Chirag Agarwal Nari Johnson Martin Pawelczyk Satyapriya Krishna Eshika Saxena Marinka Zitnik and Himabindu Lakkaraju. 2022. Rethinking Stability for Attribution-based Explanations. arxiv:2203.06877 [cs.LG] Chirag Agarwal Nari Johnson Martin Pawelczyk Satyapriya Krishna Eshika Saxena Marinka Zitnik and Himabindu Lakkaraju. 2022. Rethinking Stability for Attribution-based Explanations. arxiv:2203.06877 [cs.LG]
2. David Alvarez Melis and Tommi Jaakkola . 2018. Towards Robust Interpretability with Self-Explaining Neural Networks . In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Vol. 31. Curran Associates , Inc .https://proceedings.neurips.cc/paper_files/paper/ 2018 /file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf David Alvarez Melis and Tommi Jaakkola. 2018. Towards Robust Interpretability with Self-Explaining Neural Networks. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Vol. 31. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
3. Review of white box methods for explanations of convolutional neural networks in image classification tasks
4. J. Benois-Pineau R. Bourqui D. Petkovic and G. Quenot. 2023. Explainable Deep Learning AI: Methods and Challenges. Elsevier Science. https://books.google.fr/books?id=WHt5EAAAQBAJ J. Benois-Pineau R. Bourqui D. Petkovic and G. Quenot. 2023. Explainable Deep Learning AI: Methods and Challenges. Elsevier Science. https://books.google.fr/books?id=WHt5EAAAQBAJ