Trace aware random testing for distributed systems

Author:

Ozkan Burcu Kulahcioglu1,Majumdar Rupak1,Oraee Simin1

Affiliation:

1. MPI-SWS, Germany

Abstract

Distributed and concurrent applications often have subtle bugs that only get exposed under specific schedules. While these schedules may be found by systematic model checking techniques, in practice, model checkers do not scale to large systems. On the other hand, naive random exploration techniques often require a very large number of runs to find the specific interactions needed to expose a bug. In recent years, several random testing algorithms have been proposed that, on the one hand, exploit state-space reduction strategies from model checking and, on the other, provide guarantees on the probability of hitting bugs of certain kinds. These existing techniques exploit two orthogonal strategies to reduce the state space: partial-order reduction and bug depth. Testing algorithms based on partial order techniques, such as RAPOS or POS, ensure non-redundant exploration of independent interleavings among system events by imposing an equivalence relation on schedules and ideally exploring only one schedule from each equivalence class. Techniques based on bug depth, such as PCT, exploit the empirical observation that many bugs are exposed by the clever scheduling of a small number of key events. They bias the sample space of schedules to only cover all executions of small depth, rather than the much larger space of all schedules. At this point, there is no random testing algorithm that combines the power of both approaches. In this paper, we provide such an algorithm. Our algorithm, trace-aware PCT (taPCTCP), extends and unifies several different algorithms in the random testing literature. It samples the space of low-depth executions by constructing a schedule online, while taking dependencies among events into account. Moreover, the algorithm comes with a theoretical guarantee on the probability of sampling a trace of low depth---the probability grows exponentially with the depth but only polynomially with the number of racy events explored. We further show that the guarantee is optimal among a large class of techniques. We empirically compare our algorithm with several state-of-the-art random testing approaches for concurrent software on two large-scale distributed systems, Zookeeper and Cassandra, and show that our approach is effective in uncovering subtle bugs and usually outperforms related random testing algorithms.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A faster FPRAS for #NFA;Proceedings of the ACM on Management of Data;2024-05-10

2. Multi-Dimensional and Message-Guided Fuzzing for Robotic Programs in Robot Operating System;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

3. Greybox Fuzzing for Concurrency Testing;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

4. Predictive Monitoring against Pattern Regular Languages;Proceedings of the ACM on Programming Languages;2024-01-05

5. A Domain Specific Language for Testing Distributed Protocol Implementations;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3