Automatic Workarounds

Author:

Carzaniga Antonio1,Gorla Alessandra2,Perino Nicolò1,Pezzè Mauro3

Affiliation:

1. University of Lugano, Switzerland

2. IMDEA Software Institute, Spain

3. University of Lugano, Switzerland and University of Milano-bicocca, italy

Abstract

Despite the best intentions, the competence, and the rigorous methods of designers and developers, software is often delivered and deployed with faults. To cope with imperfect software, researchers have proposed the concept of self-healing for software systems. The ambitious goal is to create software systems capable of detecting and responding “autonomically” to functional failures, or perhaps even preempting such failures, to maintain a correct functionality, possibly with acceptable degradation. We believe that self-healing can only be an expression of some form of redundancy, meaning that, to automatically fix a faulty behavior, the correct behavior must be already present somewhere, in some form, within the software system either explicitly or implicitly. One approach is to deliberately design and develop redundant systems, and in fact this kind of deliberate redundancy is the essential ingredient of many fault tolerance techniques. However, this type of redundancy is also generally expensive and does not always satisfy the time and cost constraints of many software projects. With this article we take a different approach. We observe that modern software systems naturally acquire another type of redundancy that is not introduced deliberately but rather arises intrinsically as a by-product of modern modular software design. We formulate this notion of intrinsic redundancy and we propose a technique to exploit it to achieve some level of self-healing. We first demonstrate that software systems are indeed intrinsically redundant. Then we develop a way to express and exploit this redundancy to tolerate faults with automatic workarounds. In essence, a workaround amounts to replacing some failing operations with alternative operations that are semantically equivalent in their intended effect, but that execute different code and ultimately avoid the failure. The technique we propose finds such workarounds automatically. We develop this technique in the context of Web applications. In particular, we implement this technique within a browser extension, which we then use in an evaluation with several known faults and failures of three popular Web libraries. The evaluation demonstrates that automatic workarounds are effective: out of the nearly 150 real faults we analyzed, 100 could be overcome with automatic workarounds, and half of these workarounds found automatically were not publicly known before.

Funder

Swiss National Science Foundation, with projects n. 200021-116287 (“Perseos”), n. 200020-124918 (“WASH”), and n. 200021-138006 (“SHADE”)

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MeMo: Automatically identifying metamorphic relations in Javadoc comments for test automation;Journal of Systems and Software;2021-11

2. Win with What You Have: QoS-Consistent Edge Services with Unreliable and Dynamic Resources;2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS);2020-11

3. Metamorphic Relations for Enhancing System Understanding and Use;IEEE Transactions on Software Engineering;2020-10-01

4. Fully Automated HTML and JavaScript Rewriting for Constructing a Self‐healing Web Proxy;Software Testing, Verification and Reliability;2020-02-14

5. Optimum checkpoints for programs with loops;Simulation Modelling Practice and Theory;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3