ScatterD

Author:

White Jules1,Dougherty Brian2,Thompson Chris2,Schmidt Douglas C.2

Affiliation:

1. Virginia Tech, Blacksburg, VA

2. Vanderbilt University, Nashville, TN

Abstract

Distributed real-time and embedded (DRE) systems can be composed of hundreds of software components running across tens or hundreds of networked processors that are physically separated from one another. A key concern in DRE systems is determining the spatial deployment topology, which is how the software components map to the underlying hardware components. Optimizations, such as placing software components with high-frequency communications on processors that are closer together, can yield a number of important benefits, such as reduced power consumption due to decreased wireless transmission power required to communicate between the processing nodes. Determining a spatial deployment plan across a series of processors that will minimize power consumption is hard since the spatial deployment plan must respect a combination of real-time scheduling, fault-tolerance, resource, and other complex constraints. This article presents a hybrid heuristic/evolutionary algorithm, called ScatterD, for automatically generating spatial deployment plans that minimize power consumption. This work provides the following contributions to the study of spatial deployment optimization for power consumption minimization: (1) it combines heuristic bin-packing with an evolutionary algorithm to produce a hybrid algorithm with excellent deployment derivation capabilities and scalability, (2) it shows how a unique representation of the spatial deployment solution space integrates the heuristic and evolutionary algorithms, and (3) it analyzes the results of experiments performed with data derived from a large-scale avionics system that compares ScatterD with other automated deployment techniques. These results show that ScatterD reduces power consumption by between 6% and 240% more than standard bin-packing, genetic, and particle swarm optimization algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3