Hybrid aggregates

Author:

Strunk John D.1

Affiliation:

1. NetApp, Inc.

Abstract

Relative to traditional hard disk drives (HDDs), solid state drives (SSDs) provide a very large number of I/Os per second, but they have limited capacity. From a cost-effectiveness perspective, SSDs provide significantly better random I/O throughput per dollar than a typical disk, but the capacity provided per dollar spent on SSDs limits them to the most demanding of datasets. Traditionally, Data ONTAP® storage aggregates have been provisioned using a single type of disk. This restriction limits the costeffectiveness of the storage pool to that of the underlying disks. The Hybrid Aggregates project within the Advanced Technology Group (ATG) explored the potential to combine multiple disk types within a single aggregate. One of the primary goals of the project was to determine whether a hybrid aggregate, composed of SSDs (for their cost-effective performance) and Serial-ATA (SATA) disks (for their cost-effective capacity), could simultaneously provide better cost/performance and cost/throughput ratios than an all Fibre-Channel (FC) solution. The project has taken a two-pronged approach to building a prototype system capable of supporting hybrid aggregates. The first part of the project investigated the changes necessary for Data ONTAP RAID and WAFL® layers to support a hybrid aggregate. This included propagating disk-type information to WAFL, modifying WAFL to support the allocation of blocks from a particular storage class (i.e., disk type), and repurposing the existing writeafter- read and segment-cleaning infrastructure to support the movement of data between storage classes. The second part of the project examined potential policies for allocating and moving data between storage classes within a hybrid aggregate. Through proper policies, it is possible to automatically segregate the data within the aggregate such that the SSD-backed portion of the aggregate absorbs a large fraction of the I/O requests, leaving the SATA disks to contribute capacity for colder data. This paper describes the implementation of the Hybrid Aggregates prototype and the policies for automatic data placement and movement that have been evaluated. It also presents some performance results from the prototype system.

Publisher

Association for Computing Machinery (ACM)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3