Affiliation:
1. Tianjin University of Technology and Qilu University of Technology, Jinan, P.R China
2. Zhongnan University of Economics and Law, Wuhan, China
Abstract
In recent years, view-based 3D model retrieval has become one of the research focuses in the field of computer vision and machine learning. In fact, the 3D model retrieval algorithm consists of feature extraction and similarity measurement, and the robust features play a decisive role in the similarity measurement. Although deep learning has achieved comprehensive success in the field of computer vision, deep learning features are used for 3D model retrieval only in a small number of works. To the best of our knowledge, there is no benchmark to evaluate these deep learning features. To tackle this problem, in this work we systematically evaluate the performance of deep learning features in view-based 3D model retrieval on four popular datasets (ETH, NTU60, PSB, and MVRED) by different kinds of similarity measure methods. In detail, the performance of hand-crafted features and deep learning features are compared, and then the robustness of deep learning features is assessed. Finally, the difference between single-view deep learning features and multi-view deep learning features is also evaluated. By quantitatively analyzing the performances on different datasets, it is clear that these deep learning features can consistently outperform all of the hand-crafted features, and they are also more robust than the hand-crafted features when different degrees of noise are added into the image. The exploration of latent relationships among different views in multi-view deep learning network architectures shows that the performance of multi-view deep learning outperforms that of single-view deep learning features with low computational complexity.
Funder
National Natural Science Foundation of China
National Key R8D Program of China
Jinan's innovation team
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献