High Performance and Predictable Shared Last-level Cache for Safety-Critical Systems

Author:

Wu Zhuanhao1ORCID,Kaushik Anirudh2ORCID,Patel Hiren3ORCID

Affiliation:

1. University of Waterloo, Waterloo, Canada

2. Intel Corporation, Toronto, Canada

3. Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

Abstract

We propose ZeroCost-LLC (ZCLLC), a novel shared inclusive last-level cache (LLC) design for timing predictable multi-core platforms that offers lower worst-case latency (WCL) when compared with a traditional shared inclusive LLC design. ZCLLC achieves low WCL by eliminating certain memory operations in the form of cache line invalidations across the cache hierarchy that are a consequence of a core’s memory request that misses in the cache hierarchy and when there is no vacant entry in the LLC to accommodate the fetched data for this request. In addition to low WCL, ZCLLC offers performance benefits in the form of additional caching capacity and unlike state-of-the-art approaches, ZCLLC does not impose any constraints on its usage across multiple cores. In this work, we describe the impact of LLC cache line invalidations on the WCL and systematically build solutions to eliminate these invalidations resulting in ZCLLC. We also present ZCLLC-OPT, an optimized variant of ZCLLC that offers lower WCL and improved average-case performance over ZCLLC. We apply optimizations to the shared bus arbitration mechanism and extend the micro-architecture of ZCLLC to allow for overlapping memory requests to the main memory. Our analysis reveals that the analytical WCL of a memory request under ZCLLC-OPT is 87.0%, 93.8%, and 97.1% lower than that under state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. ZCLLC-OPT shows average-case performance speedups of 1.89×, 3.36×, and 6.24× compared with the state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. When compared with the original ZCLLC that does not have any optimizations, ZCLLC-OPT shows lower analytical WCLs that are 76.5%, 82.6%, and 86.2% lower compared with ZCLLC-NORMAL for 2, 4, and 8 cores, respectively.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3