Differentiable Hybrid Traffic Simulation

Author:

Son Sanghyun1,Qiao Yi-Ling1,Sewall Jason2,Lin Ming C.1

Affiliation:

1. University of Maryland

2. NVIDIA

Abstract

We introduce a novel differentiable hybrid traffic simulator , which simulates traffic using a hybrid model of both macroscopic and microscopic models and can be directly integrated into a neural network for traffic control and flow optimization. This is the first differentiable traffic simulator for macroscopic and hybrid models that can compute gradients for traffic states across time steps and inhomogeneous lanes. To compute the gradient flow between two types of traffic models in a hybrid framework, we present a novel intermediate conversion component that bridges the lanes in a differentiable manner as well. We also show that we can use analytical gradients to accelerate the overall process and enhance scalability. Thanks to these gradients, our simulator can provide more efficient and scalable solutions for complex learning and control problems posed in traffic engineering than other existing algorithms. Refer to https://sites.google.com/umd.edu/diff-hybrid-traffic-sim for our project.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference67 articles.

1. Enhanced Transfer Learning for Autonomous Driving with Systematic Accident Simulation

2. Differentiable Agent-Based Simulation for Gradient-Guided Simulation-Based Optimization

3. SIAM journal on applied mathematics 60, 3;Aw AATM,2000

4. Masako Bando , Katsuya Hasebe , Akihiro Nakayama , Akihiro Shibata , and Yuki Sugiyama . 1995. Dynamical model of traffic congestion and numerical simulation. Physical review E 51, 2 ( 1995 ), 1035. Masako Bando, Katsuya Hasebe, Akihiro Nakayama, Akihiro Shibata, and Yuki Sugiyama. 1995. Dynamical model of traffic congestion and numerical simulation. Physical review E 51, 2 (1995), 1035.

5. Mixing Microscopic and Macroscopic Representations of Traffic Flow: Hybrid Model Based on Lighthill–Whitham–Richards Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3