Hydrophobic and Hydrophilic Solid-Fluid Interaction

Author:

Liu Jinyuan1,Wang Mengdi1,Feng Fan1,Tang Annie1,Le Qiqin1,Zhu Bo1

Affiliation:

1. Dartmouth College

Abstract

We propose a novel solid-fluid coupling method to capture the subtle hydrophobic and hydrophilic interactions between liquid, solid, and air at their multi-phase junctions. The key component of our approach is a Lagrangian model that tackles the coupling, evolution, and equilibrium of dynamic contact lines evolving on the interface between surface-tension fluid and deformable objects. This contact-line model captures an ensemble of small-scale geometric and physical processes, including dynamic waterfront tracking, local momentum transfer and force balance, and interfacial tension calculation. On top of this contact-line model, we further developed a mesh-based level set method to evolve the three-phase T-junction on a deformable solid surface. Our dynamic contact-line model, in conjunction with its monolithic coupling system, unifies the simulation of various hydrophobic and hydrophilic solid-fluid-interaction phenomena and enables a broad range of challenging small-scale elastocapillary phenomena that were previously difficult or impractical to solve, such as the elastocapillary origami and self-assembly, dynamic contact angles of drops, capillary adhesion, as well as wetting and splashing on vibrating surfaces.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference98 articles.

1. Versatile rigid-fluid coupling for incompressible SPH

2. Purity of the sacred lotus, or escape from contamination in biological surfaces

3. Discrete viscous sheets

4. Elastocapillarity: When Surface Tension Deforms Elastic Solids

5. Jack Binysh , Thomas R Wilks , and Anton Souslov . 2021. Active elastocapillarity in soft solids with negative surface tension. arXiv preprint arXiv:2101.04006 ( 2021 ). Jack Binysh, Thomas R Wilks, and Anton Souslov. 2021. Active elastocapillarity in soft solids with negative surface tension. arXiv preprint arXiv:2101.04006 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid-Solid Coupling in Kinetic Two-Phase Flow Simulation;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3