Virtual machine design for parallel dynamic programming languages

Author:

Meier Remigius1,Rigo Armin2,Gross Thomas R.1

Affiliation:

1. ETH Zurich, Switzerland

2. n.n., n.n.

Abstract

To leverage the benefits of modern hardware, dynamic languages must support parallelism, and parallelism requires a virtual machine (VM) capable of parallel execution — a parallel VM. However, unrestricted concurrency and the dynamism of dynamic languages pose great challenges to the implementation of parallel VMs. In a dynamic language, a program changing itself is part of the language model. To help the VM, languages often choose memory models (MM) that weaken consistency guarantees. With lesser guarantees, local program state cannot be affected by every concurrent state change. And less interference allows a VM to make local assumptions about the program state which are not immediately violated. These local assumptions are essential for a VM’s just-in-time compiler for delivering state-of-the-art VM performance. Unfortunately, some dynamic languages employ MMs that give exceedingly strong consistency guarantees and thereby hinder the development of parallel VMs. Such is the case in particular for languages that depend on a global interpreter lock, which mandates a MM with sequential consistency and instruction atomicity. In this paper, we reflect on a first implementation of the Parallel RPython execution model, which facilitates the development of parallel VMs by decoupling language semantics from the synchronization mechanism used within the VM. The implementation addresses the challenges imposed by strong MMs through strict isolation of concurrent computations. This isolation builds on transactional parallel worlds, which are implemented with a novel combination of software techniques and the capabilities of modern hardware. We evaluate a set of parallel Python programs on a parallel VM that relies on Parallel RPython’s implementation. Compared with a serial baseline VM that relies on a global interpreter lock, the parallel VM achieves speedups of up to 7.5× on 8 CPU cores. The evaluation shows that our realization of Parallel RPython meets the challenges of dynamic languages, and that it can serve as a solid foundation for the construction of parallel dynamic language VMs.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-threaded OpenSmalltalk VM: Choosing a Strategy for Parallelization;Companion Proceedings of the 8th International Conference on the Art, Science, and Engineering of Programming;2024-03-11

2. EVMTracer: Dynamic Analysis of the Parallelization and Redundancy Potential in the Ethereum Virtual Machine;IEEE Access;2023

3. Virtual Machine Resource Allocation Optimization in Cloud Computing Based on Multiobjective Genetic Algorithm;Computational Intelligence and Neuroscience;2022-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3