Logical Relations as Types: Proof-Relevant Parametricity for Program Modules

Author:

Sterling Jonathan1ORCID,Harper Robert1ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract

The theory of program modules is of interest to language designers not only for its practical importance to programming, but also because it lies at the nexus of three fundamental concerns in language design: the phase distinction , computational effects , and type abstraction . We contribute a fresh “synthetic” take on program modules that treats modules as the fundamental constructs, in which the usual suspects of prior module calculi (kinds, constructors, dynamic programs) are rendered as derived notions in terms of a modal type-theoretic account of the phase distinction. We simplify the account of type abstraction (embodied in the generativity of module functors) through a lax modality that encapsulates computational effects, placing projectibility of module expressions on a type-theoretic basis. Our main result is a (significant) proof-relevant and phase-sensitive generalization of the Reynolds abstraction theorem for a calculus of program modules, based on a new kind of logical relation called a parametricity structure . Parametricity structures generalize the proof-irrelevant relations of classical parametricity to proof- relevant families, where there may be non-trivial evidence witnessing the relatedness of two programs—simplifying the metatheory of strong sums over the collection of types, for although there can be no “relation classifying relations,” one easily accommodates a “family classifying small families.” Using the insight that logical relations/parametricity is itself a form of phase distinction between the syntactic and the semantic, we contribute a new synthetic approach to phase separated parametricity based on the slogan logical relations as types , by iterating our modal account of the phase distinction. We axiomatize a dependent type theory of parametricity structures using two pairs of complementary modalities (syntactic, semantic) and (static, dynamic), substantiated using the topos theoretic Artin gluing construction. Then, to construct a simulation between two implementations of an abstract type, one simply programs a third implementation whose type component carries the representation invariant.

Funder

AFOSR

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference133 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formalizing the ∞-Categorical Yoneda Lemma;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Internalizing Indistinguishability with Dependent Types;Proceedings of the ACM on Programming Languages;2024-01-05

3. Decalf: A Directed, Effectful Cost-Aware Logical Framework;Proceedings of the ACM on Programming Languages;2024-01-05

4. Explicit Refinement Types;Proceedings of the ACM on Programming Languages;2023-08-30

5. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq;ACM Transactions on Programming Languages and Systems;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3