1. Leonel Aguilar, David Dao, Shaoduo Gan, Nezihe Merve Gurel, Nora Hollenstein, Jiawei Jiang, Bojan Karlas, Thomas Lemmin, Tian Li, Yang Li, Susie Rao, Johannes Rausch, Cedric Renggli, Luka Rimanic, Maurice Weber, Shuai Zhang, Zhikuan Zhao, Kevin Schawinski, Wentao Wu, and Ce Zhang. 2021. Ease.ML: A Lifecycle Management System for MLDev and MLOps. In Conference on Innovative Data Systems Research (CIDR 2021). https://www.microsoft.com/en-us/research/publication/ease-ml-a-lifecycle-management-system-for-mldev-and-mlops/
2. Sridhar Alla and Suman Kalyan Adari. 2021. What is mlops? In Beginning MLOps with MLFlow. Springer, 79--124.
3. Software Engineering for Machine Learning: A Case Study
4. Anonymous. 2021. ML Reproducibility Systems: Status and Research Agenda. https://openreview.net/forum?id=v-6XBItNld2
5. Amitabha Banerjee, Chien-Chia Chen, Chien-Chun Hung, Xiaobo Huang, Yifan Wang, and Razvan Chevesaran. 2020. Challenges and Experiences with $$MLOps$$ for Performance Diagnostics in $$Hybrid-Cloud$$ Enterprise Software Deployments. In 2020 USENIX Conference on Operational Machine Learning (OpML 20).