Affiliation:
1. MPI-SWS, Germany / Friedrich-Alexander University Erlangen-Nürnberg, Germany
2. MPI-SWS, Germany
3. Friedrich-Alexander University Erlangen-Nürnberg, Germany
Abstract
Sandboxing is a common technique that allows low-level, untrusted components to safely interact with trusted code. However, previous work has only investigated the low-level memory isolation guarantees of sandboxing, leaving open the question of the end-to-end guarantees that sandboxing affords programmers. In this paper, we fill this gap by showing that sandboxing enables reasoning about the known concept of
robust safety
,
i.e.
, safety of the trusted code even in the presence of arbitrary untrusted code. To do this, we first present an idealized operational semantics for a language that combines trusted code with untrusted code. Sandboxing is built into our semantics. Then, we prove that safety properties of the trusted code (as enforced through a rich type system) are upheld in the presence of arbitrary untrusted code, so long as all interactions with untrusted code occur at the “any” type (a type inhabited by all values). Finally, to alleviate the burden of having to interact with untrusted code at only the “any” type, we formalize and prove safe several
wrappers
, which automatically convert values between the “any” type and much richer types. All our results are mechanized in the Coq proof assistant.
Funder
Horizon 2020 Framework Programme
Deutsche Forschungsgemeinschaft
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献