Page Placement Strategies for GPUs within Heterogeneous Memory Systems

Author:

Agarwal Neha1,Nellans David2,Stephenson Mark2,O'Connor Mike2,Keckler Stephen W.2

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. NVIDIA, Austin, TX, USA

Abstract

Systems from smartphones to supercomputers are increasingly heterogeneous, being composed of both CPUs and GPUs. To maximize cost and energy efficiency, these systems will increasingly use globally-addressable heterogeneous memory systems, making choices about memory page placement critical to performance. In this work we show that current page placement policies are not sufficient to maximize GPU performance in these heterogeneous memory systems. We propose two new page placement policies that improve GPU performance: one application agnostic and one using application profile information. Our application agnostic policy, bandwidth-aware (BW-AWARE) placement, maximizes GPU throughput by balancing page placement across the memories based on the aggregate memory bandwidth available in a system. Our simulation-based results show that BW-AWARE placement outperforms the existing Linux INTERLEAVE and LOCAL policies by 35% and 18% on average for GPU compute workloads. We build upon BW-AWARE placement by developing a compiler-based profiling mechanism that provides programmers with information about GPU application data structure access patterns. Combining this information with simple program-annotated hints about memory placement, our hint-based page placement approach performs within 90% of oracular page placement on average, largely mitigating the need for costly dynamic page tracking and migration.

Funder

US Department of Energy

NSF

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. T. M. Aamodt W. W. L. Fung I. Singh A. El-Shafiey J. Kwa T. Hetherington A. Gubran A. Boktor T. Rogers A. Bakhoda and H. Jooybar. GPGPU-Sim 3.x Manual. http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual 2014. {Online; accessed 4-December-2014}. T. M. Aamodt W. W. L. Fung I. Singh A. El-Shafiey J. Kwa T. Hetherington A. Gubran A. Boktor T. Rogers A. Bakhoda and H. Jooybar. GPGPU-Sim 3.x Manual. http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual 2014. {Online; accessed 4-December-2014}.

2. Handling the problems and opportunities posed by multiple on-chip memory controllers

3. Analyzing CUDA workloads using a detailed GPU simulator

4. Energy efficient Phase Change Memory based main memory for future high performance systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trans-FW: Short Circuiting Page Table Walk in Multi-GPU Systems via Remote Forwarding;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

2. GPS: A Global Publish-Subscribe Model for Multi-GPU Memory Management;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

3. Whirlpool;ACM SIGOPS Operating Systems Review;2016-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3