Parsimonious rule generation for a nature-inspired approach to self-assembly

Author:

Grushin Alexander1,Reggia James A.1

Affiliation:

1. University of Maryland

Abstract

Most construction of artificial, multicomponent structures is based upon an external entity that directs the assembly process, usually following a script/blueprint under centralized control. In contrast, recent research has focused increasingly on an alternative paradigm, inspired largely by the nest building behavior of social insects, in which components “self-assemble” into a given target structure. Adapting such a nature-inspired approach to precisely self-assemble artificial structures (bridge, building, etc.) presents a formidable challenge: one must create a set of local control rules to direct the behavior of the individual components/agents during the self-assembly process. In recent work, we developed a fully automated procedure that generates such rules, allowing a given structure to successfully self-assemble in a simulated environment having constrained, continuous motion; however, the resulting rule sets were typically quite large. In this article, we present a more effective methodology for automatic rule generation, which makes an attempt to parsimoniously capture both the repeating patterns that exist within a structure, and the behaviors necessary for appropriate coordination. We then empirically show that the procedure developed here generates sets of rules that are not only correct, but significantly reduced in size, relative to our earlier approach. Such rule sets allow for simpler agents that are nonetheless still capable of performing complex tasks, and therefore demonstrate the problem-solving potential of self-organized systems.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference44 articles.

1. }}Adam J. 2005. Designing emergence. Ph.D. Dissertation University of Essex. }}Adam J. 2005. Designing emergence. Ph.D. Dissertation University of Essex.

2. Self-Organization in Relation to Several Similar Concepts: Are the Boundaries to Self-Organization Indistinct?

3. Self-assemblages in insect societies

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemistry-Inspired Pattern Formation With Robotic Swarms;IEEE Robotics and Automation Letters;2022-10

2. Provable self-organizing pattern formation by a swarm of robots with limited knowledge;Swarm Intelligence;2019-02-11

3. Collective Construction with Robot Swarms;Morphogenetic Engineering;2012

4. L-System-Driven Self-assembly for Swarm Robotics;Advances in Artificial Intelligence;2011

5. Editorial;ACM Transactions on Autonomous and Adaptive Systems;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3