Curvature-Driven Conformal Deformations

Author:

Corman Etienne1ORCID

Affiliation:

1. Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract

In this paper, we introduce a novel approach for computing conformal deformations in ℝ 3 while minimizing curvature-based energies. Curvature-based energies serve as fundamental tools in geometry processing, essential for tasks such as surface fairing, deformation, and approximation using developable or cone metric surfaces. However, accurately computing the geometric embedding, especially for the latter, has been a challenging endeavor. The complexity arises from inherent numerical instabilities in curvature estimation and the intricate nature of differentiating these energies. To address these challenges, we concentrate on conformal deformations, leveraging the curvature tensor as the primary variable in our model. This strategic choice renders curvature-based energies easily applicable, mitigating previous manipulation difficulties. Our key contribution lies in identifying a previously unknown integrability condition that establishes a connection between conformal deformations and changes in curvature. We use this insight to deform surfaces of arbitrary genus, aiming to minimize bending energies or prescribe Gaussian curvature while sticking to positional constraints.

Publisher

Association for Computing Machinery (ACM)

Reference52 articles.

1. Alex Baden, Keenan Crane, and Misha Kazhdan. 2018. Möbius registration. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 211--220.

2. Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal flattening by curvature prescription and metric scaling. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 449--458.

3. Discrete Willmore flow

4. Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon mesh processing. CRC press.

5. Simulation of clothing with folds and wrinkles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3