Affiliation:
1. Princeton Univ., Princeton, NJ
2. Univ. of California, Irvine
Abstract
Patterns used for supersampling in graphics have been analyzed from statistical and signal-processing viewpoints. We present an analysis based on a type of isotropic discrepancy—how good patterns are at estimating the area in a region of defined type. We present algorithms for computing discrepancy relative to regions that are defined by rectangles, halfplanes, and higher-dimensional figures. Experimental evidence shows that popular supersampling patterns have discrepancies with better asymptotic behavior than random sampling, which is not inconsistent with theoretical bounds on discrepancy.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献