IntelliMerge: a refactoring-aware software merging technique

Author:

Shen Bo1,Zhang Wei1,Zhao Haiyan1,Liang Guangtai2,Jin Zhi1,Wang Qianxiang2

Affiliation:

1. Peking University, China

2. Huawei Technologies, China

Abstract

In modern software development, developers rely on version control systems like Git to collaborate in the branch-based development workflow. One downside of this workflow is the conflicts occurred when merging contributions from different developers: these conflicts are tedious and error-prone to be correctly resolved, reducing the efficiency of collaboration and introducing potential bugs. The situation becomes even worse, with the popularity of refactorings in software development and evolution, because current merging tools (usually based on the text or tree structures of source code) are unaware of refactorings. In this paper, we present IntelliMerge, a graph-based refactoring-aware merging algorithm for Java programs. We explicitly enhance this algorithm's ability in detecting and resolving refactoring-related conflicts. Through the evaluation on 1,070 merge scenarios from 10 popular open-source Java projects, we show that IntelliMerge reduces the number of merge conflicts by 58.90% comparing with GitMerge (the prevalent unstructured merging tool) and 11.84% comparing with jFSTMerge (the state-of-the-art semi-structured merging tool) without sacrificing the auto-merging precision (88.48%) and recall (90.22%). Besides, the evaluation of performance shows that IntelliMerge takes 539 milliseconds to process one merge scenario on the median, which indicates its feasibility in real-world applications.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting semantic conflicts with unit tests;Journal of Systems and Software;2024-08

2. ConflictBench: A benchmark to evaluate software merge tools;Journal of Systems and Software;2024-08

3. Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions;Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension;2024-04-15

4. On the methodology of three-way structured merge in version control systems: Top-down, bottom-up, or both;Journal of Systems Architecture;2023-12

5. Automatic prediction of developers’ resolutions for software merge conflicts;Journal of Systems and Software;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3