ASTRO

Author:

Petrolo Riccardo1,Shaikhanov Zhambyl2,Lin Yingyan2,Knightly Edward2

Affiliation:

1. Konica Minolta Lab Europe, Italy

2. Rice University, USA

Abstract

We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of fuzzy logic control theory combined with target tracking algorithm in unmanned aerial vehicle target tracking;Scientific Reports;2024-08-09

2. IoT in the Air: Thread-Enabled Flying IoT Network for Indoor Environments;2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2023-03-13

3. FALCON: A Networked Drone System for Sensing, Localizing, and Approaching RF Targets;IEEE Internet of Things Journal;2022-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3