RICA-MD: A Refined ICA Algorithm for Motion Detection

Author:

Zhang Chao1,Wu Xiaopei1,Lu Jianchao2ORCID,Zheng Xi2,Jolfaei Alireza2,Sheng Quan Z.2,Yu Dongjin3

Affiliation:

1. Anhui University, China

2. Macquarie University, Australia

3. Hangzhou Dianzi University, China

Abstract

With the rapid development of various computing technologies, the constraints of data processing capabilities gradually disappeared, and more data can be simultaneously processed to obtain better performance compared to conventional methods. As a standard statistical analysis method that has been widely used in many fields, Independent Component Analysis (ICA) provides a new way for motion detection by extracting the foreground without precisely modeling the background. However, most existing ICA-based motion detection algorithms use only two-channel data for source separation and simply generate the observation vectors by decomposing and reconstructing the images by row, hence they cannot obtain an integrated and accurate shape of the moving objects in complex scenes. In this article, we propose a refined ICA algorithm for motion detection (RICA-MD), which fuses a larger number of channels than conventional ICA-based motion detection algorithms to provide more effective information for foreground extraction. Meanwhile, we propose four novel methods for generating observation vectors to further cover the diverse motion styles of the moving objects. These improvements enable RICA-MD to effectively deal with slowly moving objects, which are difficult to detect using conventional methods. Our quantitative evaluation in multiple scenes shows that our proposed method is able to achieve a better performance at an acceptable cost of false alarms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3