1. Hamzah Abdelaziz , ali shafiee, Jong Hoon Shin , Ardavan Pedram , and Joseph Hassoun . 2021 . Rethinking Floating Point Overheads for Mixed Precision DNN Accelerators . In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.). Vol. 3. 223–239 . https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf Hamzah Abdelaziz, ali shafiee, Jong Hoon Shin, Ardavan Pedram, and Joseph Hassoun. 2021. Rethinking Floating Point Overheads for Mixed Precision DNN Accelerators. In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.). Vol. 3. 223–239. https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf
2. 9.1 A 7nm 4-Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS INT4 Inference and Workload-Aware Throttling
3. Jorge Albericio , Alberto Delmás , Patrick Judd , Sayeh Sharify , Gerard O’Leary , Roman Genov , and Andreas Moshovos . 2017 . Bit-Pragmatic Deep Neural Network Computing. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 382–394 . Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and Andreas Moshovos. 2017. Bit-Pragmatic Deep Neural Network Computing. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 382–394.
4. FPRaker: A Processing Element For Accelerating Neural Network Training
5. Flexibility