A product-form network for systems with job stealing policies

Author:

Olliaro Diletta1,Casale Giuliano2,Marin Andrea1,Rossi Sabina1

Affiliation:

1. DAIS, Università Ca’ Foscari di Venezia, Italy

2. Department of Computing, Imperial College London, United Kingdom

Abstract

In queueing networks, product-form solutions are of fundamental importance to efficiently compute performance metrics in complex models of computer systems. The product-form property entails that the steady-state probabilities of the joint stochastic process underlying the network can be expressed as the normalized product of functions that only depend on the local state of the components. In many relevant cases, product-forms are the only way to perform exact quantitative analyses of large systems. In this work, we introduce a novel class of product-form queueing networks where servers are always busy. Applications include model of systems where successive refinements on jobs improve the processes quality but are not strictly required to obtain a result. To this aim, we define a job movement policy that admits instantaneous migrations of jobs from non-empty waiting buffers to empty ones. Thus, the resulting routing scheme is state-dependent. This class of networks maximizes the system throughput. This model can be implemented with arbitrary topology, including feedback, and both in an open and closed setting. As far as closed systems are concerned, we give a convolution algorithm and the corresponding mean value analysis to compute expected performance indices for closed models.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Reference30 articles.

1. A unifying approach to product-forms in networks with finite capacity constraints

2. Computational algorithms for closed queueing networks with exponential servers

3. N. Gast and B. Gaujal. 2010. A mean field model of work stealing in large-scale systems. In Proc. of SIGMETRICS 2010, International Conference on Measurement and Modeling of Computer Systems. Association for Computer Machinery, New York, NY, USA, 13–24.

4. Replacement of train wheels: an application of dynamic reversal of a Markov process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3