General Temporally Biased Sampling Schemes for Online Model Management

Author:

Hentschel Brian1,Haas Peter J.2,Tian Yuanyuan3

Affiliation:

1. Harvard University, Cambridge, Massachusetts, USA

2. University of Massachusetts Amherst, Amherst, Massachusetts, USA

3. IBM Research?Almaden, San Jose, California, USA

Abstract

To maintain the accuracy of supervised learning models in the presence of evolving data streams, we provide temporally biased sampling schemes that weight recent data most heavily, with inclusion probabilities for a given data item decaying over time according to a specified “decay function.” We then periodically retrain the models on the current sample. This approach speeds up the training process relative to training on all of the data. Moreover, time-biasing lets the models adapt to recent changes in the data while—unlike in a sliding-window approach—still keeping some old data to ensure robustness in the face of temporary fluctuations and periodicities in the data values. In addition, the sampling-based approach allows existing analytic algorithms for static data to be applied to dynamic streaming data essentially without change. We provide and analyze both a simple sampling scheme (Targeted-Size Time-Biased Sampling (T-TBS)) that probabilistically maintains a target sample size and a novel reservoir-based scheme (Reservoir-Based Time-Biased Sampling (R-TBS)) that is the first to provide both control over the decay rate and a guaranteed upper bound on the sample size. If the decay function is exponential, then control over the decay rate is complete, and R-TBS maximizes both expected sample size and sample-size stability. For general decay functions, the actual item inclusion probabilities can be made arbitrarily close to the nominal probabilities, and we provide a scheme that allows a tradeoff between sample footprint and sample-size stability. R-TBS rests on the notion of a “fractional sample” and allows for data arrival rates that are unknown and time varying (unlike T-TBS). The R-TBS and T-TBS schemes are of independent interest, extending the known set of unequal-probability sampling schemes. We discuss distributed implementation strategies; experiments in Spark illuminate the performance and scalability of the algorithms, and show that our approach can increase machine learning robustness in the face of evolving data.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Data Layout Optimization with Worst-Case Guarantees;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Workload-Aware Performance Tuning for Multimodel Databases Based on Deep Reinforcement Learning;International Journal of Intelligent Systems;2023-09-05

3. Exact PPS sampling with bounded sample size;Information Processing Letters;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3