Very Long Instruction Word architectures and the ELI-512

Author:

Fisher Joseph A.

Abstract

By compiling ordinary scientific applications programs with a radical technique called trace scheduling, we are generating code for a parallel machine that will run these programs faster than an equivalent sequential machine—we expect 10 to 30 times faster. Trace scheduling generates code for machines called Very Long Instruction Word architectures. In Very Long Instruction Word machines, many statically scheduled, tightly coupled, fine-grained operations execute in parallel within a single instruction stream. VLIWs are more parallel extensions of several current architectures. These current architectures have never cracked a fundamental barrier. The speedup they get from parallelism is never more than a factor of 2 to 3. Not that we couldn't build more parallel machines of this type; but until trace scheduling we didn't know how to generate code for them. Trace scheduling finds sufficient parallelism in ordinary code to justify thinking about a highly parallel VLIW. At Yale we are actually building one. Our machine, the ELI-512, has a horizontal instruction word of over 500 bits and will do 10 to 30 RISC-level operations per cycle [Patterson 82]. ELI stands for Enormously Longword Instructions; 512 is the size of the instruction word we hope to achieve. (The current design has a 1200-bit instruction word.) Once it became clear that we could actually compile code for a VLIW machine, some new questions appeared, and answers are presented in this paper. How do we put enough tests in each cycle without making the machine too big? How do we put enough memory references in each cycle without making the machine too slow?

Publisher

Association for Computing Machinery (ACM)

Reference15 articles.

1. The Organization of Microprogram Stores

2. A technique for global microcode compaction;Fisher J. A.;IEEE Transactions on Computers c-30(7),1981

3. Percolation of Code to Enhance Parallel Dispatching and Execution

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sirael: Virtual Metabolic Machine;Biomedical Materials & Devices;2024-06-19

2. WideSA: A High Array Utilization Mapping Scheme for Uniform Recurrences on ACAP;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

3. An Adaptive Instruction Set Encoding Automatic Generation Method for VLIW;Lecture Notes in Computer Science;2024

4. Realizing multioperations and multiprefixes in Thick Control Flow processors;Microprocessors and Microsystems;2023-04

5. The Architecture;Handbook of Computer Architecture;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3