ST4ML: Machine Learning Oriented Spatio-Temporal Data Processing at Scale

Author:

Liu Kaiqi1ORCID,Tong Panrong2ORCID,Li Mo1ORCID,Wu Yue2ORCID,Huang Jianqiang2ORCID

Affiliation:

1. Nanyang Technological University, Singapore, Singapore

2. Alibaba DAMO Academy, Hangzhou, China

Abstract

Data scientists and researchers utilize enormous spatio-temporal data and build machine learning models to solve practical problems in diverse domains including intelligent transportation, urban planning, epidemic prediction, and many more. Extracting application-specific features from big spatio-temporal data poses system requirements of heterogeneous data support, efficient and scalable computing over spatial and temporal dimensions, as well as a user-friendly programming interface. This paper presents ST4ML, a distributed spatio-temporal data processing system to support scalable machine-learning-oriented applications. We propose a three-stage pipelining computing framework, namely "selection-conversion-extraction" to abstract the distributed computing flow and implement it based on Apache Spark. To the best of our knowledge, ST4ML is the first of its kind to realize our design considerations. Extensive experiments with real-world datasets evidence that ST4ML outperforms straightforward extensions of existing ST data processing systems by up to an order of magnitude. ST4ML is open-sourced at https://github.com/Panrong/st4ml.

Funder

Alibaba Group

Singapore Ministry of Education

National Research Foundation, Singapore

Alibaba-NTU Singapore Joint Research Institute

Publisher

Association for Computing Machinery (ACM)

Reference80 articles.

1. Mart'in Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek G. Murray , Benoit Steiner , Paul Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning . In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation ( Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283. Mart'in Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283.

2. Bijaya Adhikari , Xinfeng Xu , Naren Ramakrishnan , and B. Aditya Prakash . 2019. EpiDeep: Exploiting Embeddings for Epidemic Forecasting . In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining ( Anchorage, AK, USA) (KDD '19). Association for Computing Machinery, New York, NY, USA, 577--586. https://doi.org/10.1145/3292500.3330917 10.1145/3292500.3330917 Bijaya Adhikari, Xinfeng Xu, Naren Ramakrishnan, and B. Aditya Prakash. 2019. EpiDeep: Exploiting Embeddings for Epidemic Forecasting. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD '19). Association for Computing Machinery, New York, NY, USA, 577--586. https://doi.org/10.1145/3292500.3330917

3. Hadoop GIS

4. A demonstration of ST-hadoop

5. Apache. 2006. Apache Hadoop. https://hadoop.apache.org/. Apache. 2006. Apache Hadoop. https://hadoop.apache.org/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TMan: A High-Performance Trajectory Data Management System Based on Key-Value Stores;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3