Just-in-time static type checking for dynamic languages

Author:

Ren Brianna M.1,Foster Jeffrey S.1

Affiliation:

1. University of Maryland at College Park, USA

Abstract

Dynamic languages such as Ruby, Python, and JavaScript have many compelling benefits, but the lack of static types means subtle errors can remain latent in code for a long time. While many researchers have developed various systems to bring some of the benefits of static types to dynamic languages, prior approaches have trouble dealing with metaprogramming, which generates code as the program executes. In this paper, we propose Hummingbird, a new system that uses a novel technique, just-in-time static type checking, to type check Ruby code even in the presence of metaprogramming. In Hummingbird, method type signatures are gathered dynamically at run-time, as those methods are created. When a method is called, Hummingbird statically type checks the method body against current type signatures. Thus, Hummingbird provides thorough static checks on a per-method basis, while also allowing arbitrarily complex metaprogramming. For performance, Hummingbird memoizes the static type checking pass, invalidating cached checks only if necessary. We formalize Hummingbird using a core, Ruby-like language and prove it sound. To evaluate Hummingbird, we applied it to six apps, including three that use Ruby on Rails, a powerful framework that relies heavily on metaprogramming. We found that all apps typecheck successfully using Hummingbird, and that Hummingbird's performance overhead is reasonable. We applied Hummingbird to earlier versions of one Rails app and found several type errors that had been introduced and then fixed. Lastly, we demonstrate using Hummingbird in Rails development mode to typecheck an app as live updates are applied to it.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3