Optimal Hadamard gate count for Clifford + T synthesis of Pauli rotations sequences

Author:

Vandaele Vivien1,Martiel Simon2,Perdrix Simon3,Vuillot Christophe3

Affiliation:

1. Atos Quantum Lab, France and Université de Lorraine, CNRS, Inria, LORIA, France

2. Atos Quantum Lab, France

3. Université de Lorraine, CNRS, Inria, LORIA, France

Abstract

The Clifford + T gate set is commonly used to perform universal quantum computation. In such setup the T gate is typically much more expensive to implement in a fault-tolerant way than Clifford gates. To improve the feasibility of fault-tolerant quantum computing it is then crucial to minimize the number of T gates. Many algorithms, yielding effective results, have been designed to address this problem. It has been demonstrated that performing a pre-processing step consisting of reducing the number of Hadamard gates in the circuit can help to exploit the full potential of these algorithms and thereby lead to a substantial T -count reduction. Moreover, minimizing the number of Hadamard gates also restrains the number of additional qubits and operations resulting from the gadgetization of Hadamard gates, a procedure used by some compilers to further reduce the number of T gates. In this work we tackle the Hadamard gate reduction problem, and propose an algorithm for synthesizing a sequence of π /4 Pauli rotations with a minimal number of Hadamard gates. Based on this result, we present an algorithm which optimally minimizes the number of Hadamard gates lying between the first and the last T gate of the circuit.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference35 articles.

1. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning

2. An algorithm for the T-countAn algorithm for the T-count

3. Nabila Abdessaied , Mathias Soeken , and Rolf Drechsler . 2014. Quantum Circuit Optimization by Hadamard Gate Reduction . In Reversible Computation, Shigeru Yamashita and Shin-ichi Minato (Eds.). Springer International Publishing , Cham , 149–162. DOI: http://dx.doi.org/1007/978-3-319-08494-7_12 1007/978-3-319-08494-7_12 Nabila Abdessaied, Mathias Soeken, and Rolf Drechsler. 2014. Quantum Circuit Optimization by Hadamard Gate Reduction. In Reversible Computation, Shigeru Yamashita and Shin-ichi Minato (Eds.). Springer International Publishing, Cham, 149–162. DOI: http://dx.doi.org/1007/978-3-319-08494-7_12

4. T-Count Optimization and Reed–Muller Codes

5. Yunseong Nam , Neil  J Ross , Yuan Su , Andrew  M Childs , and Dmitri Maslov . 2018. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information 4, 1 ( 2018 ), 1–12. Yunseong Nam, Neil J Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information 4, 1 (2018), 1–12.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3