DySel

Author:

Chang Li-Wen1,Kim Hee-Seok1,Hwu Wen-mei W.1

Affiliation:

1. University of Illinois, Urbana, IL, USA

Abstract

The rising pressure for simultaneously improving performance and reducing power is driving more diversity into all aspects of computing devices. An algorithm that is well-matched to the target hardware can run multiple times faster and more energy efficiently than one that is not. The problem is complicated by the fact that a program's input also affects the appropriate choice of algorithm. As a result, software developers have been faced with the challenge of determining the appropriate algorithm for each potential combination of target device and data. This paper presents DySel, a novel runtime system for automating such determination for kernel-based data parallel programming models such as OpenCL, CUDA, OpenACC, and C++AMP. These programming models cover many applications that demand high performance in mobile, cloud and high-performance computing. DySel systematically deploys candidate kernels on a small portion of the actual data to determine which achieves the best performance for the hardware-data combination. The test-deployment, referred to as micro-profiling, contributes to the final execution result and incurs less than 8% of overhead in the worst observed case when compared to an oracle. We show four major use cases where DySel provides significantly more consistent performance without tedious effort from the developer.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morpheus: Extending the Last Level Cache Capacity in GPU Systems Using Idle GPU Core Resources;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

2. clMF: A fine-grained and portable alternating least squares algorithm for parallel matrix factorization;Future Generation Computer Systems;2020-07

3. Efficient and Portable ALS Matrix Factorization for Recommender Systems;2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3