Rhythm

Author:

Agrawal Sandeep R.1,Pistol Valentin1,Pang Jun1,Tran John2,Tarjan David2,Lebeck Alvin R.1

Affiliation:

1. Duke University, Durham, USA

2. NVIDIA Corporation, Santa Clara, USA

Abstract

Trends in increasing web traffic demand an increase in server throughput while preserving energy efficiency and total cost of ownership. Present work in optimizing data center efficiency primarily focuses on the data center as a whole, using off-the-shelf hardware for individual servers. Server capacity is typically increased by adding more machines, which is cheap, though inefficient in the long run in terms of energy and area. Our work builds on the observation that server workload execution patterns are not completely unique across multiple requests. We present a framework---called Rhythm---for high throughput servers that can exploit similarity across requests to improve server performance and power/energy efficiency by launching data parallel executions for request cohorts. An implementation of the SPECWeb Banking workload using Rhythm on NVIDIA GPUs provides a basis for evaluating both software and hardware for future cohort-based servers. Our evaluation of Rhythm on future server platforms shows that it achieves 4x the throughput (reqs/sec) of a core i7 at efficiencies (reqs/Joule) comparable to a dual core ARM Cortex A9. A Rhythm implementation that generates transposed responses achieves 8x the i7 throughput while processing 2.5x more requests/Joule compared to the A9.

Publisher

Association for Computing Machinery (ACM)

Reference57 articles.

1. http://www.ieee802.org/3/. http://www.ieee802.org/3/.

2. Hybrid memory cube. http://hybridmemorycube.org. Hybrid memory cube. http://hybridmemorycube.org.

3. Pci express 4.0 faq. http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/. Pci express 4.0 faq. http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/.

4. FAWN

5. STREX

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PIM-WEAVER: A High Energy-efficient, General-purpose Acceleration Architecture for String Operations in Big Data Processing;Sustainable Computing: Informatics and Systems;2019-03

2. Anatomy of GPU Memory System for Multi-Application Execution;Proceedings of the 2015 International Symposium on Memory Systems;2015-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3