Optimizing the migration of virtual computers

Author:

Sapuntzakis Constantine P.1,Chandra Ramesh1,Pfaff Ben1,Chow Jim1,Lam Monica S.1,Rosenblum Mendel1

Affiliation:

1. Stanford University

Abstract

This paper shows how to quickly move the state of a running computer across a network, including the state in its disks, memory, CPU registers, and I/O devices. We call this state a capsule . Capsule state is hardware state, so it includes the entire operating system as well as applications and running processes.We have chosen to move x 86 computer states because x 86 computers are common, cheap, run the software we use, and have tools for migration. Unfortunately, x 86 capsules can be large, containing hundreds of megabytes of memory and gigabytes of disk data. We have developed techniques to reduce the amount of data sent over the network: copy-on-write disks track just the updates to capsule disks, "ballooning" zeros unused memory, demand paging fetches only needed blocks, and hashing avoids sending blocks that already exist at the remote end. We demonstrate these optimizations in a prototype system that uses VMware GSX Server virtual, machine monitor to create and run x 86 capsules. The system targets networks as slow as 384 kbps.Our experimental results suggest that efficient capsule migration can improve user mobility and system management. Software updates or installations on a set of machines can be accomplished simply by distributing a capsule with the new changes. Assuming the presence of a prior capsule, the amount of traffic incurred is commensurate with the size of the update or installation package itself. Capsule migration makes it possible for machines to start running an application within 20 minutes on a 384 kbps link, without having to first install the application or even the underlying operating system. Furthermore, users' capsules can be migrated during a commute between home and work in even less time.

Publisher

Association for Computing Machinery (ACM)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3