A Survey on the Use of Preferences for Virtual Machine Placement in Cloud Data Centers

Author:

Alashaikh Abdulaziz1,Alanazi Eisa2ORCID,Al-Fuqaha Ala3

Affiliation:

1. University of Jeddah, Saudi Arabia

2. Umm Al-Qura University, Saudi Arabia

3. Western Michigan University, USA

Abstract

With the rapid development of virtualization techniques, cloud data centers allow for cost-effective, flexible, and customizable deployments of applications on virtualized infrastructure. Virtual machine (VM) placement aims to assign each virtual machine to a server in the cloud environment. VM Placement is of paramount importance to the design of cloud data centers. Typically, VM placement involves complex relations and multiple design factors as well as local policies that govern the assignment decisions. It also involves different constituents including cloud administrators and customers that might have disparate preferences while opting for a placement solution. Thus, it is often valuable to return not only an optimized solution to the VM placement problem but also a solution that reflects the given preferences of the constituents. In this article, we provide a detailed review on the role of preferences in the recent literature on VM placement. We examine different preference representations found in the literature, explain their existing usage, and explain the adopted solving approaches. We further discuss key challenges and identify possible research opportunities to better incorporate preferences within the context of VM placement.

Funder

Postdoctoral Initiative Program at the Ministry of Education, Saudi Arabia

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference148 articles.

1. Ziv Rafalovich. [n.d.]. https://azure.microsoft.com/en-us/blog/introducing-proximity-placement-groups/. Ziv Rafalovich. [n.d.]. https://azure.microsoft.com/en-us/blog/introducing-proximity-placement-groups/.

2. phoenixNAP. [n.d.]. https://phoenixnap.com. phoenixNAP. [n.d.]. https://phoenixnap.com.

3. Amazon. [n.d.]. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/. Amazon. [n.d.]. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/.

4. Google. [n.d.]. Machine Types. https://cloud.google.com/compute/docs/machine-types. Google. [n.d.]. Machine Types. https://cloud.google.com/compute/docs/machine-types.

5. Steve Harrington Linette Williams and Mike Murphy. [n.d.]. Solving the HA Challenge: Placement Groups for Virtual Servers. https://www.ibm.com/cloud/blog/announcements/ha-challenge-placement-groups-virtual-servers. Steve Harrington Linette Williams and Mike Murphy. [n.d.]. Solving the HA Challenge: Placement Groups for Virtual Servers. https://www.ibm.com/cloud/blog/announcements/ha-challenge-placement-groups-virtual-servers.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3