Finding the Largest Successful Coalition under the Strict Goal Preferences of Agents

Author:

Su Zhaopin1ORCID,Zhang Guofu1,Yue Feng1,He Jindong1,Li Miqing2,Li Bin3,Yao Xin4ORCID

Affiliation:

1. Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei, China

2. CERCIA, School of Computer Science, The University of Birmingham, Birmingham, UK

3. School of Information Science and Technology, University of Science and Technology of China, Hefei, China

4. Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Abstract

Coalition formation has been a fundamental form of resource cooperation for achieving joint goals in multiagent systems. Most existing studies still focus on the traditional assumption that an agent has to contribute its resources to all the goals, even if the agent is not interested in the goal at all. In this article, a natural extension of the traditional coalitional resource games (CRGs) is studied from both theoretical and empirical perspectives, in which each agent has uncompromising, personalized preferences over goals. Specifically, a new CRGs model with agents’ strict preferences for goals is presented, in which an agent is willing to contribute its resources only to the goals that are in its own interest set. The computational complexity of the basic decision problems surrounding the successful coalition is reinvestigated. The results suggest that these problems in such a strict preference way are complex and intractable. To find the largest successful coalition for possible computation reduction or potential parallel processing, a flow-network–based exhaust algorithm, called FNetEA, is proposed to achieve the optimal solution. Then, to solve the problem more efficiently, a hybrid algorithm, named 2D-HA, is developed to find the approximately optimal solution on the basis of genetic algorithm, two-dimensional (2D) solution representation, and a heuristic for solution repairs. Through extensive experiments, the 2D-HA algorithm exhibits the prominent ability to provide reassurances that the optimal solution could be found within a reasonable period of time, even in a super-large-scale space.

Funder

National Natural Science Foundation of China

Shenzhen Peacock Plan

Fundamental Research Funds

Anhui Provincial Key Research and Development Program

Humanities and Social Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3