Construction of All Multilayer Monolithic RSMTs and Its Application to Monolithic 3D IC Routing

Author:

Dewan Monzurul Islam1ORCID,Lin Sheng-En David2ORCID,Kim Dae Hyun1ORCID

Affiliation:

1. Washington State University

2. Cadence Design Systems Inc.

Abstract

Monolithic three-dimensional (M3D) integration allows ultra-thin silicon tier stacking in a single package. The high-density stacking is acquiring interest and is becoming more popular for smaller footprint areas, shorter wirelength, higher performance, and lower power consumption than the conventional planar fabrication technologies. The physical design of M3D integrated circuits requires several design steps, such as three-dimensional (3D) placement, 3D clock-tree synthesis, 3D routing, and 3D optimization. Among these, 3D routing is significantly time consuming due to countless routing blockages. Therefore, 3D routers proposed in the literature insert monolithic interlayer vias (MIVs) and perform tier-by-tier routing in two substeps. In this article, we propose an algorithm to build a routing topology database (DB) used to construct all multilayer monolithic rectilinear Steiner minimum trees on the 3D Hanan grid. To demonstrate the effectiveness of the DB in various applications, we use the DB to construct timing-driven 3D routing topologies and perform congestion-aware global routing on 3D designs. We anticipate that the algorithm and the DB will help 3D routers reduce the runtime of the MIV insertion step and improve the quality of the 3D routing.

Funder

Defense Advanced Research Projects Agency Young Faculty Award

New Faculty Seed Grant funded by the Washington State University

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Global Router with Topology Optimization on Hanan Grid;2024 13th International Conference on Communications, Circuits and Systems (ICCCAS);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3