Discrete Fréchet Distance under Translation

Author:

Bringmann Karl1,KüNnemann Marvin2,Nusser André3

Affiliation:

1. Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

2. Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

3. Max Planck Institute for Informatics and Graduate School of Computer Science, Saarland Informatics Campus, Germany

Abstract

The discrete Fréchet distance is a popular measure for comparing polygonal curves. An important variant is the discrete Fréchet distance under translation, which enables detection of similar movement patterns in different spatial domains. For polygonal curves of length n in the plane, the fastest known algorithm runs in time Õ( n 5 ) [12]. This is achieved by constructing an arrangement of disks of size Õ( n 4 ), and then traversing its faces while updating reachability in a directed grid graph of size N := Õ( n 5 ), which can be done in time Õ(√ N ) per update [27]. The contribution of this article is two-fold. First, although it is an open problem to solve dynamic reachability in directed grid graphs faster than Õ(√ N ), we improve this part of the algorithm: We observe that an offline variant of dynamic s - t -reachability in directed grid graphs suffices, and we solve this variant in amortized time Õ( N 1/3 ) per update, resulting in an improved running time of Õ( N 4.66 ) for the discrete Fréchet distance under translation. Second, we provide evidence that constructing the arrangement of size Õ( N 4 ) is necessary in the worst case by proving a conditional lower bound of n 4 - o(1) on the running time for the discrete Fréchet distance under translation, assuming the Strong Exponential Time Hypothesis.

Funder

H2020 European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3