Hierarchical RLE level set

Author:

Houston Ben1,Nielsen Michael B.2,Batty Christopher3,Nilsson Ola4,Museth Ken5

Affiliation:

1. Exocortex Technologies, Frantic Films, Ottawa, Ont., Canada

2. University of Århus, Norrköping, Sweden

3. University of British Columbia, Frantic Films, Vancouver, BC, Canada

4. Linköping Institute of Technology, Norrköping, Sweden

5. Linköping Institute of Technology and University of Århus, Norrköping, Sweden

Abstract

This article introduces the Hierarchical Run-Length Encoded (H-RLE) Level Set data structure. This novel data structure combines the best features of the DT-Grid (of Nielsen and Museth [2004]) and the RLE Sparse Level Set (of Houston et al. [2004]) to provide both optimal efficiency and extreme versatility. In brief, the H-RLE level set employs an RLE in a dimensionally recursive fashion. The RLE scheme allows the compact storage of sequential nonnarrowband regions while the dimensionally recursive encoding along each axis efficiently compacts nonnarrowband planes and volumes. Consequently, this new structure can store and process level sets with effective voxel resolutions exceeding 5000 × 3000 × 3000 (45 billion voxels) on commodity PCs with only 1 GB of memory. This article, besides introducing the H-RLE level set data structure and its efficient core algorithms, also describes numerous applications that have benefited from our use of this structure: our unified implicit object representation, efficient and robust mesh to level set conversion, rapid ray tracing, level set metamorphosis, collision detection, and fully sparse fluid simulation (including RLE vector and matrix representations.) Our comparisons of the popular octree level set and Peng level set structures to the H-RLE level set indicate that the latter is superior in both narrowband sequential access speed and overall memory usage.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference40 articles.

1. A Fast Level Set Method for Propagating Interfaces

2. A level-set approach for the metamorphosis of solid models

3. Bridson R. 2003. Computational aspects of dynamic surfaces. dissertation. Stanford University Stanford CA. Bridson R. 2003. Computational aspects of dynamic surfaces. dissertation. Stanford University Stanford CA.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3