Affiliation:
1. Chennai Mathematical Institute
2. University of Chicago
3. The Institute of Mathematical Sciences
Abstract
Viewing the computation of the determinant and the permanent of integer matrices as combinatorial problems on associated graphs, we explore the restrictiveness of planarity on their complexities and show that both problems remain as hard as in the general case, that is, GapL- and P- complete. On the other hand, both bipartite planarity and bimodal planarity bring the complexity of permanents down (but no further) to that of determinants. The permanent or the determinant modulo 2 is complete for ⊕L, and we show that parity of paths in a layered grid graph (which is bimodal planar) is also complete for this class. We also relate the complexity of grid graph reachability to that of testing existence/uniqueness of a perfect matching in a planar bipartite graph.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献