Replication in Requirements Engineering: The NLP for RE Case

Author:

Abualhaija Sallam1ORCID,Aydemir F. Basak2ORCID,Dalpiaz Fabiano2ORCID,Dell'Anna Davide3ORCID,Ferrari Alessio4ORCID,Franch Xavier5ORCID,Fucci Davide6ORCID

Affiliation:

1. University of Luxembourg, Luxembourg, Luxembourg

2. Utrecht University, Utrecht Netherlands

3. Utrecht University, Utrecht, Netherlands

4. CNR ISTI, Pisa Italy

5. Universitat Politècnica de Catalunya, Barcelona, Spain

6. Blekinge Institute of Technology, Karlskrona, Sweden

Abstract

Natural language processing (NLP) techniques have been widely applied in the requirements engineering (RE) field to support tasks such as classification and ambiguity detection. Despite its empirical vocation, RE research has given limited attention to replication of NLP for RE studies. Replication is hampered by several factors, including the context specificity of the studies, the heterogeneity of the tasks involving NLP, the tasks’ inherent hairiness , and, in turn, the heterogeneous reporting structure. To address these issues, we propose a new artifact, referred to as ID-Card , whose goal is to provide a structured summary of research papers emphasizing replication-relevant information. We construct the ID-Card through a structured, iterative process based on design science. In this article: (i) we report on hands-on experiences of replication; (ii) we review the state-of-the-art and extract replication-relevant information: (iii) we identify, through focus groups, challenges across two typical dimensions of replication: data annotation and tool reconstruction; and (iv) we present the concept and structure of the ID-Card to mitigate the identified challenges. This study aims to create awareness of replication in NLP for RE. We propose an ID-Card that is intended to foster study replication but can also be used in other contexts, e.g., for educational purposes.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3