A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities

Author:

Tocchetti Andrea1ORCID,Corti Lorenzo2ORCID,Balayn Agathe2ORCID,Yurrita Mireia2ORCID,Lippmann Philip2ORCID,Brambilla Marco3ORCID,Yang Jie2ORCID

Affiliation:

1. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

2. TU Delft, Delft, Netherlands

3. Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano Italy

Abstract

Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive and constitutes a key issue that impedes large-scale adoption. Besides, robustness is interpreted differently across domains and contexts of AI. In this work, we systematically survey recent progress to provide a reconciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point of view: 1) methods and approaches that address robustness in different phases of the machine learning pipeline; 2) methods improving robustness in specific model architectures, tasks, and systems; and in addition, 3) methodologies and insights around evaluating the robustness of AI systems, particularly the trade-offs with other trustworthiness properties. Finally, we identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge they can provide, and discuss the need for better understanding practices and developing supportive tools in the future.

Publisher

Association for Computing Machinery (ACM)

Reference289 articles.

1. Maged Abdelaty, Sandra Scott-Hayward, Roberto Doriguzzi-Corin, and Domenico Siracusa. 2021. GADoT: GAN-based Adversarial Training for Robust DDoS Attack Detection. In CNS. IEEE, 119–127.

2. DL-FHMC: Deep Learning-based Fine-grained Hierarchical Learning Approach for Robust Malware Classification

3. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In UAI. PMLR 2114–2124.

4. Improving the Robustness of Neural Networks Using K-Support Norm Based Adversarial Training

5. David Alvarez-Melis and Tommi S. Jaakkola. 2018. On the Robustness of Interpretability Methods. https://doi.org/10.48550/ARXIV.1806.08049

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness in trajectory prediction for autonomous vehicles: a survey;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3