Database design for incomplete relations

Author:

Levene Mark1,Loizou George2

Affiliation:

1. Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, U.K.

2. Department of Computer Science, Birkbeck College, Malet Street, London

Abstract

Although there has been a vast amount of research in the area of relational database design, to our knowledge, there has been very little work that considers whether this theory is still valid when relations in the database may be incomplete. When relations are incomplete and thus contain null values the problem of whether satisfaction is additive arises. Additivity is the property of the equivalence of the satisfaction of a set of functional dependencies (FDs) F with the individual satisfaction of each member of F in an incomplete relation. It is well known that in general, satisfaction of FDs is not additive. Previously we have shown that satisfaction is additive if and only if the set of FDs is monodependent. We conclude that monodependence is a fundamental desirable property of a set of FDs when considering incomplete information in relational database design. We show that, when the set of FDs F either satifies the intersection property or the split-freeness property, then the problem of finding an optimum cover of F can be solved in polynomial time in the size of F; in general, this problem is known to be NP-complete. We also show that when F satisfies the split-freeness property then deciding whether there is a superkey of cardinality k or less can be solved in polynomial time in the size of F, since all the keys have the same cardinality. If F only satisfies the intersection property then this problem is NP-complete, as in the general case. Moreover, we show that when F either satisfies the intersection property or the split-freeness property then deciding whether an attribute is prime can be solved in polynomial time in the size of F; in general, this problem is known to be NP-complete. Assume that a relation schema R is an appropriate normal form with respect to a set of FDs F. We show that when F satisfies the intersection property then the notions of second normal form and third normal form are equivalent. We also show that when R is in Boyce-Codd Normal Form (BCNF), then F is monodependent if and only if either there is a unique key for R, or for all keys X for R, the cardinality of X is one less than the number of attributes associated with R. Finally, we tackle a long-standing problem in relational database theory by showing that when a set of FDs F over R satisfies the intersection property, it also satisfies the split-freeness property (i.e., is monodependent), if and only if every lossless join decomposition of R with respect to F is also dependecy preserving. As a corollary of this result we are able to show that when F satisfies the intersection property, it also satisfies the intersection property, it also satisfies the split-freeness property(i.e., is monodependent), if and only if every lossless join decomposition of R, which is in BCNF, is also dependency preserving. Our final result is that when F is monodependent, then there exists a unique optimum lossless join decomposition of R, which is in BCNF, and is also dependency preserving. Furthermore, this ultimate decomposition can be attained in polynomial time in the size of F.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normalizing Property Graphs;Proceedings of the VLDB Endowment;2023-07

2. Entity integrity management under data volume, variety and veracity;Knowledge and Information Systems;2023-01-25

3. SQL schema design: foundations, normal forms, and normalization;Information Systems;2018-07

4. On Desirable Semantics of Functional Dependencies over Databases with Incomplete Information;Fundamenta Informaticae;2018-02-09

5. SQL Schema Design;Proceedings of the 2016 International Conference on Management of Data;2016-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3