A Large-Scale Empirical Study on Improving the Fairness of Image Classification Models

Author:

Yang Junjie1ORCID,Jiang Jiajun1ORCID,Sun Zeyu2ORCID,Chen Junjie1ORCID

Affiliation:

1. Tianjin University, Tianjin, China

2. Institute of Software at Chinese Academy of Sciences, Beijing, China

Publisher

ACM

Reference98 articles.

1. Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna M. Wallach. 2018. A Reductions Approach to Fair Classification. In ICML 2018, Jennifer G. Dy and Andreas Krause (Eds.) (Proceedings of Machine Learning Research, Vol. 80). PMLR, 60–69. http://proceedings.mlr.press/v80/agarwal18a.html

2. Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha. 2019. Black box fairness testing of machine learning models. In ESEC/FSE 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 625–635.

3. Jing An, Lexing Ying, and Yuhua Zhu. 2021. Why resampling outperforms reweighting for correcting sampling bias with stochastic gradients. In ICLR 2021. OpenReview.net.

4. Sumon Biswas and Hridesh Rajan. 2020. Do the machine learning models on a crowd sourced platform exhibit bias? an empirical study on model fairness. In ESEC/FSE 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 642–653.

5. Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3