A discriminative model for semi-supervised learning

Author:

Balcan Maria-Florina1,Blum Avrim2

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia

2. Carnegie Mellon University, Pittsburgh, Pennsylvania

Abstract

Supervised learning—that is, learning from labeled examples—is an area of Machine Learning that has reached substantial maturity. It has generated general-purpose and practically successful algorithms and the foundations are quite well understood and captured by theoretical frameworks such as the PAC-learning model and the Statistical Learning theory framework. However, for many contemporary practical problems such as classifying web pages or detecting spam, there is often additional information available in the form of unlabeled data, which is often much cheaper and more plentiful than labeled data. As a consequence, there has recently been substantial interest in semi-supervised learning—using unlabeled data together with labeled data—since any useful information that reduces the amount of labeled data needed can be a significant benefit. Several techniques have been developed for doing this, along with experimental results on a variety of different learning problems. Unfortunately, the standard learning frameworks for reasoning about supervised learning do not capture the key aspects and the assumptions underlying these semi -supervised learning methods. In this article, we describe an augmented version of the PAC model designed for semi-supervised learning, that can be used to reason about many of the different approaches taken over the past decade in the Machine Learning community. This model provides a unified framework for analyzing when and why unlabeled data can help, in which one can analyze both sample-complexity and algorithmic issues. The model can be viewed as an extension of the standard PAC model where, in addition to a concept class C , one also proposes a compatibility notion: a type of compatibility that one believes the target concept should have with the underlying distribution of data. Unlabeled data is then potentially helpful in this setting because it allows one to estimate compatibility over the space of hypotheses, and to reduce the size of the search space from the whole set of hypotheses C down to those that, according to one's assumptions, are a-priori reasonable with respect to the distribution. As we show, many of the assumptions underlying existing semi-supervised learning algorithms can be formulated in this framework. After proposing the model, we then analyze sample-complexity issues in this setting: that is, how much of each type of data one should expect to need in order to learn well, and what the key quantities are that these numbers depend on. We also consider the algorithmic question of how to efficiently optimize for natural classes and compatibility notions, and provide several algorithmic results including an improved bound for Co-Training with linear separators when the distribution satisfies independence given the label.

Funder

Division of Information and Intelligent Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference77 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3